12 research outputs found

    Automatic Delineation of Water Bodies in SAR Images with a Novel Stochastic Distance Approach

    Get PDF
    Coastal regions and surface waters are among the fundamental biological and social development resources worldwide. For this reason, it is essential to thoroughly monitor these regions to determine and characterize their geographical features and environmental health. These geographical regions, however, present several monitoring challenges when using remotely sensed imagery. Small water bodies tend to be surrounded by swamps, marshes, or vegetation, making accurate border detection difficult. Coastal waters, in turn, experience several phenomena due to winds, undercurrents, and waves, which also hamper the detection of environmental hazards like oil spills. In this work, we propose an automated segmentation algorithm that can be applied to these targets in airborne and spaceborne SAR images. The method is based on pointwise detection in fuzzy borders using a parameter estimation of the (Formula presented.) distribution, which has been successfully used in similar contexts. The underlying assumption is that the sought-for border separates regions with different textures, each having different distribution parameters. Then, stochastic distances can identify the most likely point where this parameter change occurs. A curve interpolation algorithm then estimates the actual contour of the body given the detected points. We assess the adequacy of eight stochastic distances that are mostly applied in the literature. We evaluate the performance of our method in terms of similarity between true and detected boundaries on simulated and actual SAR images, achieving promising results. The performance of our proposal is assessed by Hausdorff distance and Intersection over Union. In the case of synthetic data, the selection of the best stochastic distance depends on the parameters of the (Formula presented.) distribution. In contrast, the harmonic-mean and triangular distances produced the best results in detecting borders in three actual SAR images of lagoons. Finally, we present the results of our proposal applied to an image with oil spills using Bhattacharyya, Hellinger, and Jensen–Shannon distances.Fil: Rey, Andrea Alejandra. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Revollo Sarmiento, Natalia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Frery, Alejandro César. Victoria University Of Wellington; Nueva ZelandaFil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin

    Evaluación del error en la detección de puntos de borde en imágenes SAR polarimétricas

    Get PDF
    El Radar de Apertura Sintética polarimétrico (PolSAR - Polarimentric Synthetic Aperture Radar) es ampliamente utilizado en teledetección porque permite capturar imágenes terrestres de alta resolución. La interpretación automática de imágenes PolSAR es una tarea muy difícil porque éstas contienen un gran volumen de información y además se encuentran contaminadas con ruido speckle. Las características de este ruido hacen necesario utilizar métodos estadísticos para el procesamiento digital de este tipo de imágenes. En esta línea de investigación se pretende evaluar el error que se comete al calcular las posiciones de los puntos de borde dentro de la imagen, utilizando la distribución Wishart compleja y experimentos de Montecarlo en imágenes PolSAR simuladas.Eje: Computación Gráfica, Imágenes y Visualización.Red de Universidades con Carreras en Informática (RedUNCI

    A detailed characterization of complex networks using Information Theory

    Get PDF
    Understanding the structure and the dynamics of networks is of paramount importance for manyscientific fields that rely on network science. Complex network theory provides a variety of features thathelp in the evaluation of network behavior. However, such analysis can be confusing and misleading asthere are many intrinsic properties for each network metric. Alternatively, Information Theory methodshave gained the spotlight because of their ability to create a quantitative and robust characterizationof such networks. In this work, we use two Information Theory quantifiers, namely Network Entropyand Network Fisher Information Measure, to analyzing those networks. Our approach detects nontrivialcharacteristics of complex networks such as the transition present in the Watts-Strogatz modelfrom k-ring to random graphs; the phase transition from a disconnected to an almost surely connectednetwork when we increase the linking probability of Erdős-Rényi model; distinct phases of scale-freenetworks when considering a non-linear preferential attachment, fitness, and aging features alongsidethe configuration model with a pure power-law degree distribution. Finally, we analyze the numericalresults for real networks, contrasting our findings with traditional complex network methods. Inconclusion, we present an efficient method that ignites the debate on network characterization.Fil: Freitas, Cristopher G. S.. Universidade Federal de Alagoas; BrasilFil: Aquino, Andre L. L.. Universidade Federal de Alagoas; BrasilFil: Ramos, Heitor S.. Universidade Federal de Minas Gerais; BrasilFil: Frery, Alejandro César. Universidade Federal de Alagoas; BrasilFil: Rosso, Osvaldo Aníbal. Instituto Universitario del Hospital Italiano de Buenos Aires; Argentina. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    SAR image segmentation using B-Spline deformable contours

    Get PDF
    Synthetic Aperture Radar (SAR) images are corrupted by a signal-dependent non-additive noise called speckle. Many statistical models have been proposed to describe this noise, aiming at the development of specialized techniques for image improvement and analysis. One of the most important parameters in SAR imagery is texture or roughness that, within some statistical models, can be characterized by a scalar. This quantity is obscured by speckle noise. The G distribution is a quite exible model that succeeds in describing areas with a wide range of roughness, from pastures (homogeneous) to urban areas (extremely heterogeneous). This distribution exhibits a remarkably good performance within urban areas, while other distributions considered in the literature for SAR data, namely Gamma and K, fail to t that type of data. In addition to its expressiveness, a sub-case of the G distribution, the G0 distribution is mathematically more tractable than the classical K law. These parameters will be estimated in order nd the transition points between regions with di erent degrees of homogeneity. In order to determine the boundaries of urban areas in SAR imagery B-Splines is here proposed. After the speci cation of an initial region within the city to be segmented, the algorithm determines the positions of the B-Spline control points maximizing an objective function. The proposed algorithm is tested on synthetic SAR images in order to measure its performance.Eje: ImágenesRed de Universidades con Carreras en Informática (RedUNCI

    Robust principal components for hyperspectral data analysis

    Get PDF
    Remote sensing data present peculiar features and characteristics that may make their statistical processing and analysis a difficult task. Among them, it can be mentioned the volume of data involved, the redundancy, the presence of unexpected values that arise mainly due to noisy pixels and background objects whose responses to the sensor are very different from those of their neighbours. Sometimes, the volume of data and number of variables involved is so large that any statistical analysis becomes unmanageable if data are not condensed in some way. A commonly used method to deal with this situation is Principal Component Analysis (PCA) based on classical statistics: sample mean and covariance matrices. The drawback in using sample covariance or correlation matrices as measures of variability is their high sensitivity to spurious values. In this work we analyse and evaluate the use of some Robust Principal Component techniques and make a comparison of Robust and Classical PCs performances when applied to satellite data provided by the hyperspectral sensor AVIRIS (Airborne Visible/Infrared Imaging Spectrometer). We conclude that some robust approaches are the most reliable and precise when applied as a data reduction technique before performing supervised image classification. © 2009 Springer Berlin Heidelberg.Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; ArgentinaFil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasi

    When data do not bring information: A case study in markov random fields estimation

    No full text
    The Potts model is frequently used to describe the behavior of image classes, since it allows to incorporate contextual information linking neighboring pixels in a simple way. Its isotropic version has only one real parameter β, known as smoothness parameter or inverse temperature, which regulates the classes map homogeneity. The classes are unavailable and estimating them is central in important image processing procedures as, for instance, image classification. Methods for estimating the classes which stem from a Bayesian approach under the Potts model require to adequately specify a value for β. The estimation of such parameter can be efficiently made solving the pseudo maximum-likelihood (PML) equations in two different schemes, using the prior or the posterior model. Having only radiometric data available, the first scheme needs the computation of an initial segmentation, whereas the second uses both the segmentation and the radiometric data to make the estimation. In this paper, we compare these two PML estimators by computing the mean-square error (MSE), bias, and sensitivity to deviations from the hypothesis of the model. We conclude that the use of extra data does not improve the accuracy of the PML; moreover, under gross deviations from the model, this extra information introduces unpredictable distortions and bias.Fil: Gimenez Romero, Javier Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Probabilidad y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Frery, Alejandro César. Universidade Federal de Alagoas; BrasilFil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Probabilidad y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Automatic Delineation of Water Bodies in SAR Images with a Novel Stochastic Distance Approach

    No full text
    Coastal regions and surface waters are among the fundamental biological and social development resources worldwide. For this reason, it is essential to thoroughly monitor these regions to determine and characterize their geographical features and environmental health. These geographical regions, however, present several monitoring challenges when using remotely sensed imagery. Small water bodies tend to be surrounded by swamps, marshes, or vegetation, making accurate border detection difficult. Coastal waters, in turn, experience several phenomena due to winds, undercurrents, and waves, which also hamper the detection of environmental hazards like oil spills. In this work, we propose an automated segmentation algorithm that can be applied to these targets in airborne and spaceborne SAR images. The method is based on pointwise detection in fuzzy borders using a parameter estimation of the G0 distribution, which has been successfully used in similar contexts. The underlying assumption is that the sought-for border separates regions with different textures, each having different distribution parameters. Then, stochastic distances can identify the most likely point where this parameter change occurs. A curve interpolation algorithm then estimates the actual contour of the body given the detected points. We assess the adequacy of eight stochastic distances that are mostly applied in the literature. We evaluate the performance of our method in terms of similarity between true and detected boundaries on simulated and actual SAR images, achieving promising results. The performance of our proposal is assessed by Hausdorff distance and Intersection over Union. In the case of synthetic data, the selection of the best stochastic distance depends on the parameters of the GI0 distribution. In contrast, the harmonic-mean and triangular distances produced the best results in detecting borders in three actual SAR images of lagoons. Finally, we present the results of our proposal applied to an image with oil spills using Bhattacharyya, Hellinger, and Jensen–Shannon distances

    Simulation of spatially correlated clutter fields

    No full text
    Correlated G distributions can be used to describe the clutter seen in images obtained with coherent illumination, as is the case of B-scan ultrasound, laser, sonar, and synthetic aperture radar (SAR) imagery. These distributions are derived using the square root of the generalized inverse Gaussian distribution for the amplitude backscatter within the multiplicative model. A two-parameter particular case of the amplitude G distribution, called, constitutes a modeling improvement with respect to the widespread KA distribution when fitting urban, forested, and deforested areas in remote sensing data. This article deals with the modeling and the simulation of correlated-distributed random fields. It is accomplished by means of the Inverse Transform method, applied to Gaussian random fields with spatial correlation. The main feature of this approach is its generality, since it allows the introduction of negative correlation values in the resulting process, necessary for the proper explanation of the shadowing effect in many SAR images. © 2009 Taylor & Francis Group, LLC.Fil: Bustos, Oscar Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Frery, Alejandro César. Universidade Federal de Alagoas; BrasilFil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentin
    corecore